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LONG-TERM GOALS 

We seek to focus quantitative uncertainty management attributes of the Bayesian Hierarchical Model 
(BHM) methodology on the identification, characterization, and evolution of irreducible model error in 
ocean data assimilation and forecast systems. 

OBJECTIVES 

A sequence of project objectives build upon experience gained under prior Office of Naval Research 
(ONR) support. First, we will extend time- and space-dependent error covariance BHM from the 
Mediterranean Forecast System (MFS) to Regional Ocean Model System (ROMS) applications in the 
California Current System (CCS). Second, reduced-dimension error process models will be developed 
from ensembles of ROMS analyses and forecasts wherein selected model parameterizations (e.g. 
diffusion) are treated as random. Monte Carlo sampling algorithms will be developed to obtain 
posterior distributions for prescribed error models (e.g. additive, multiplicative, etc.). Third, based on 
the experience gained in the first and second sets of objectives, we will develop an ocean forecast model 
error process BHM to evolve distributions for model error. 
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Funding for this research arrived at the cooperating institutions in the latter half of the fiscal year 
(NWRA/CoRA funding in place as of late May 2010, University of Missouri funding arrived as late as 
August 2010). In this report, we elaborate plans and progress in pursuit of the first set of objectives. 

APPROACH 

Time-Varying Error Covariance Models 

Consider a vector of spatially distributed, time dependent errors, denoted by et . Let the error processes 
can associated with differences between a deterministic model and its long term averages and/or 
differences between the deterministic model and observations for multiple state variables. The goal is to 
obtain the time-varying error covariance matrix, defined to be Σt , for the error process. In traditional 
linear Kalman filter approaches to data assimilation, one estimates the error covariance matrix through 
the Kalman recursions, updating the estimates as new data become available. In nonlinear or 
non-Gaussian systems, analytical forms for the estimated covariance are not available. Furthermore, in 
high dimensional settings, sequential importance sampling approaches that can give estimates for 
nonlinear and non-Gaussian systems, are not efficient and rely on potentially unrealistic approximations. 
These difficulties demonstrate the need for new approaches. In our research we develop a hierarchical 
approach to model these covariances directly, given observations of the model errors. 

A critical component of our approach relies on the use of basis function expansions. Specifically, we 
write the n × n error covariance matrix as 

Σt = ΦBt Φ
� , 

where Φ is an n × p matrix of EOFs and Bt is a p × p positive definite matrix. The important idea here 
is that there are a set of EOF modes that are thought to be important, yet their relative importance 
through time varies. This then implies that Bt is not diagonal (as it would be for the stationary EOF 
decomposition of the error covariance matrix). One statistical challenge is to develop an efficient model 
for Bt . Note that the dimension reduction (from n to p, where n >> p) is crucial, as it allows us to focus 
on models for time-varying error covariance matrices through the treatment of comparatively few 
parameters contained in Bt rather than the full Σt . 

The error covariance BHM development is an extension of a BHM application in the MFS project that 
is in its final stages. In that application, the model for error vectors et is given by 

et = Φβ t + η t (1) 

where Φ are vertical EOF bases, β t are time-dependent amplitudes, and η t ∼ Gau(0,ση 
2I) account for 

additional uncertainty, such as that arising from the dimension reduction. Critically, we assume that 
β t ∼ Gau(0,Bt ), where, as discussed above, Bt is the time-dependent contribution to Σt . We write Bt in 
terms of its modified Cholesky decomposition (Chen and Dunson, 2003), 

Bt = Λt Γt Γt 
�
Λt , 

where Λt is a diagonal matrix with elements proportional to the standard deviations of the elements of 
β t and Γt is a lower triangular matrix associated with the correlations among the β t . The hierarchical 
Bayesian specification allows the non-zero elements of Λt and Γt to be expressed as regression 
coefficients in a linear model (Chen and Dunson, 2003). In our time-varying context, these “regression” 
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Figure 1: Misfit (left panel) and anomaly (right panel) data stage inputs for a time-dependent error 
covariance matrix BHM application in the Gulf of Lions region of the Western Mediterranean Sea. Similar 
datasets and BHM applications will be constructed for the CCS as part of research focus 1 in the proposed 

research. 

coefficients are modeled as autoregressive time series, with parameters modeled probabilistically in the 
BHM. 

The data stage inputs to our BHM are model misfits dt and anomalies qt . The model misfits are forecast 
differences with respect to in-situ observations. The anomalies are departures from the model “year 
minus day” climatologies. These vectors can be written 

obsdt = Ht (Xt|t−1) − x (2)t 

qt = Xt|t−1 − x̄

obswhere Ht is the operator that moves the forecast Xt|t−1 to the observation x locations for comparison, t 
and X̄t is the climatology value for the model state variable X . 

Figure 1a and b depict the dt and qt for the Gulf of Lions region of the western Mediterranean Sea for 
the period October 2004 through October 2007. The misfits are with respect to Argo data in the Gulf of 
Lions during this period. 

Milliff will coordinate with Prof. Andrew M. Moore of the ROMS 4DVAR project to obtain dt and qt 
data sets from ROMS applications during interesting oceanographic events (e.g. upwelling, offshore 
streamer development, etc.) in the CCS. 

Additional Statistical Model Development 

While the MFS implementation of the modified Cholesky BHM is showing promise (see below), there 
are additional covariance modeling methodologies that might prove beneficial for the CCS domain. In 
particular, we are exploring the possibility of using so-called “mixture models” to account for rapid 
regime-shifts in the error covariance model. For example, consider the time-varying matrix Bt defined 
above. In this case, assume that Bt is controlled by parameters, say θ t , that are time varying. The current 
version of the MFS BHM assumes these parameters evolve in time by a multivariat autoregressive 
process (i.e. a “random walk”). Alternatively, in the mixture approach, we assume that the distribution 
of these parameters in time corresponds to a mixture of possible distributions at each time. That is, 

q 

[θ t ] = ∑ πi,t [θ t (i)|η t ] 
i=1 
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where the bracket notation “[ ]” refers to probability distribution, πi,t corresponds to mixture 
probabilities, where πi,t is the probability of the distribution associated with θ t (i) is appropriate at time 
t. In this case, the distribution of the possible parameters is controlled by other parameters η t . Note that 
the power of the hierarchical approach is that we can then focus our modeling attention on the mixture 
probabilities πi,t and the controlling parameters η t . The advantage is that scientifically meaningful 
covariates can be included in these lower levels of the hierarchy to suggest scientifically meaningful 
regimes that are likely to exhibit different error covariance properties. 

Another path that is currently being explored by the graduate student at U. Missouri is a statistical 
time-varying covariance model that does not rely on the EOF expansion, but can still be represented in 
terms of small numbers of parameters. This work is in its very early stages. 

Stochastic Diffusion Based MCMC 

As in all of our analyses in these research projects, the computations for assessing the posterior 
distributions rely on Markov chain Monte Carlo (MCMC) methods. However, MCMC is severely tested 
in settings involving nonlinear, non-Gaussian models; particularly in high dimensions. The nature of the 
physical models used in our work limit the efficiency of common MCMC algorithms such as Gibbs 
Sampling, Metropolis-Hastings methods, and “Metropolis-within-Gibbs” hybrids. Berliner and Herbei 
are developing practical implementations, and identifying properties of an alternative MCMC, known as 
diffusion (or Langevin) MCMC. In this approach, we formulate a model for a diffusion process that is a 
solution to a stochastic differential equation (SDE). By choosing the drift and diffusion function of the 
SDE appropriately, we can insure that the stationary distribution of the diffusion process coincides with 
our posterior distribution. The method uses the Fokker-Planck equation and its stationary solution. 

This approach may be very useful in our work in that there is no computation or simulation of the 
probability distributions used in Gibbs Sampling. Neither are there any direct needs for Metropolis 
steps. However, efficient simulation of complicated, diffusion processes in high-dimensions is stil not 
easy in general. We are currently developing algorithms. 

WORK COMPLETED 

Time-Varying Error Covariance Models 

In initial experiments we found substantial disagreements between assimilation results using the MFS 
operational system error covariance and the BHM time-varying error covariance. Sensitivity studies 
suggested that the differences were due to variations in how seasonality was removed in the operational 
system versus the BHM, as well as how vertical level-thickness information was included in the EOF 
decomposition (e.g. North et al., 1982). Recent test simulations produced with BHM EOFs calculated 
in a fashion similar to that used in the MFS system gave much closer agreement to the MFS operational 
results. The latest BHM results were based on a run with just the anomaly data (i.e., qt ), so as to 
compare with the MFS assimilation. The time period considered was the six month span from January ­
May 2007. 

Figure 2 shows four of the associated temperature-salinity error covariance estimates (i.e., the posterior 
mean) for the Gulf of Lions region during the data stage period covered in Fig. 1. Large amplitude 
temperature error covariances at the surface and in the upper ocean vary over the 15-day period spanned 
by the matrix evolution depicted in Fig. 2. Due to the inherent differences in variability in the salinity 
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Figure 2: Multi-variate (T,S) error covariance matrix evolution, every 5 days from 13 May 2007 (upper left) to
 
28 May 2007 (lower right) from error covariance BHM in (1) given data from (3). Sub-regional error
 

covariance characterization is planned for focus 1 of the proposed research in the CCS.
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Figure 3: RMS misfits for temperature and salinity. Green lines/circles corresponds to the operational MFS 
assimilation and the white lines/circles correspond to the MFS system using the BHM covariances for a 6 

month experiment. 

anomalies, the associated variances and covariances do not stand out in these images. However, note
 
that the covariances are modeled on a scale that does allow for the temperature-salinity
 
cross-covariances to play a role. The figures shown here are rescaled back to the original observation
 
space.
 

Comparison of the RMS misfits for the operational MFS system and the MFS system with the BHM 
covariances are shown for temperature, salinity and sea level anomalies (SLA) in Figures 3 and 4, 
respectively. These figures show that the RMS for salinity and SLA are comparable between the BHM 
and the operational system and, other than the temperature at upper levels, the temperature is reasonably 
close as well. These results are encouraging in that there was no attempt to optimize the BHM results 
for this time period and the actual misfit data were not used. Given the favorable comparisons of the 
BHM time-varying error covariances and the MFS seasonally-varying error covariances, we will finish 
up experiments to: 

(i) consider the effect of using a trivariate EOF, adding the surface height anomaly; 

(ii) add the dt misfit data; and 

(iii) contrast seasonally-varying EOFs and the effects of horizontal averaging of the anomaly data. 

It is important to note that the BHM methodology is now mature and further development of this 
particular model from a statistical perspective is not likely to be necessary. 

The MFS Med results suggest that it is useful to apply a similar methodology to et in the CCS domain 
(e.g. in the CalCOFI and Globec regions of the domain). The error covariance structures that are
 
products of this research focus will be provided to the ROMS 4DVAR project, for application to their
 
cost function estimation.
 

Relevant Presentations 

(Berliner, Herbei, Milliff, Wikle) Informal presentations and discussions at the annual “All-Hands” 
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Figure 4: RMS misfits for SLA. Green lines/circles corresponds to the operational MFS assimilation and the 
white lines/circles correspond to the MFS system using the BHM covariances for a 6 month experiment. 

project meeting at NWRA/CoRA, August, 2010. 

(Milliff, Wikle; session co-conveners) Probabilistic Models in Ocean Sciences: Applications in Data 
Assimilation, Coupled Ecosystem Models and Air-Sea Interaction Studies, American Geophysical 
Union, Ocean Sciences Meeting, Portland, OR, February, 2010. 

(Berliner) Combining Models and Data: The Bayesian Approach to Modeling and Prediction, Invited 
Talk, AGU Ocean Sciences Meeting, Portland, OR, February, 2010. 

(Milliff, Pinardi, Wikle, Berliner, Bonazzi) Process model considerations for a surface wind Bayesian 
hierarchical model. Poster, AGU Ocean Sciences Meeting, Portland, OR, February 2010. 

(Milliff) Estimating semivariograms to build covariance matrices for J. Workshop on the ROMS 4D-Var 
Data Assimilation Systems for Advanced ROMS Users, University of California, Santa Cruz, July 2010. 

(Wikle) A hierarchical approach to motivate spatio-temporal statistical models. Institute for Pure and 
Applied Mathematics (IPAM), UCLA, Los Angeles, CA, May 25, 2010. 

(Wikle) Bayesian hierarchical models to augment the Mediterranean forecast system. Invited talk. Iowa 
State University. Ames, IA, October 15, 2009. 

(Wikle) Don’t forget the process! Using scientific process knowledge to motivate spatio-temporal 
models. Invited talk. SAMSI Program on Space-Time Analysis for Environmental Mapping, 
Epidemiology and Climate Change, Opening Workshop, RTP, North Carolina, September 14, 2009. 

(Wikle) A class of nonlinear spatio-temporal dynamic models. Invited Talk, Joint Statistics Meetings, 
Washington, DC, August 4, 2009. 

RESULTS 

Time-Varying Error Covariance Models 
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Embedded scales in the error covariance estimations of ocean forecast systems act to rescale the error 
covariance magnitudes. This will impact the cost function estimation in the CCS implementations of 
ROMS 4DVAR. Anomaly data stage inputs are probably not sufficient to represent abrupt regime shifts 
in the ocean state. Experiments adding misfit data stage inputs and using mixture models will be useful 
in modelling error covariance response to ocean regime shifts in the CCS. 

IMPACT/APPLICATIONS 

The research overlapping the ONR project to use BHM to augment MFS, with the initial few months of 
the ONR model error project demonstrates practical methods to add time- and space-dependence to 
error covariance representations in operational (MFS) and near-operational (ROMS) ocean forecast 
systems. Refining estimates of the time-dependent changes in forecast uncertainty across regime shifts 
adds value to ocean forecast system output. 

TRANSITIONS 

Informal communications with scientists in the Ocean Modelling branch of the Naval Research 
Laboratory, Bay St. Louis, MI have carried over from the ONR MFS project. 

RELATED PROJECTS 

“Bayesian Hierarchical Models to Augment the Mediterranean Forecast System”, ONR Physical 
Oceanography Program, May 2009 - May 2011. 

“Estimating Ecosystem Model Uncertainties in Pan-Regional Syntheses and Climate Change Impacts 
on Coastal Domains of the North Pacific Ocean”, NSF US Globec Program, October 2008 - October 
2011. 

“Quantifying the Amplitude, Structure and Influence of Model Error during Ocean Analysis and 
Forecast Cycles”, ONR Physical Oceanography Program, A. Moore (PI). 
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